Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 284: 943-961, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25446364

RESUMO

The medial preoptic and anterior hypothalamic areas (MPO/AH) are important androgen targets regulating homeostasis, neuroendocrinology and circadian rhythm as well as instinctive and sociosexual behaviors. Although species differences between rats and mice have been pointed out in terms of morphology and physiology, detailed distributions of androgen receptor (AR) have never been compared between the two rodents. In the present study, AR distribution was examined immunohistochemically in serial sections of the MPO/AH and compared for adult rats and mice. Western blotting and immunohistochemistry clearly demonstrated that AR expression in the brain was stronger in mice than in rats and was stronger in males than in females. In addition, we found (1) an "obliquely elongated calbindin-ir cell island" in mice medial preoptic nucleus (MPN) expressed AR intensely, as well as the sexually dimorphic nucleus in the MPN (SDN-MPN) in rats, strongly supporting a "putative SDN-MPN" previously proposed in mice; (2) AR expression in the suprachiasmatic nucleus (SCN) was much more prominent in mice than in rats and differed in localization between the two species; (3) a mouse-specific AR-ir cell cluster was newly identified as the "tear drop nucleus (TDN)", with male-dominant sexual dimorphism; and (4) two rat-specific AR-ir cell clusters were also newly identified as the "rostral and caudal nebular islands", with male-dominant sexual dimorphism. The present results may provide basic morphological evidence underlying species differences in androgen-modified psychological, physiological and endocrinergic responses. Above all, the findings of the mouse-specific TDN and differing AR expression in the SCN might explain not only species difference in gonadal modification of circadian rhythm, but also distinct structural bases in the context of transduction of SCN oscillation. The current study could also serve as a caution that data on androgen-sensitive functions obtained from one species should not always be directly applied to others among rodents.


Assuntos
Hipotálamo Anterior/fisiologia , Área Pré-Óptica/fisiologia , Receptores Androgênicos/metabolismo , Caracteres Sexuais , Especificidade da Espécie , Envelhecimento , Androgênios/administração & dosagem , Androgênios/sangue , Animais , Western Blotting , Calbindinas/metabolismo , Di-Hidrotestosterona/administração & dosagem , Di-Hidrotestosterona/sangue , Feminino , Hipotálamo Anterior/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Fotomicrografia , Área Pré-Óptica/efeitos dos fármacos , Ratos Wistar
2.
J Mol Biol ; 284(5): 1307-22, 1998 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-9878352

RESUMO

We describe a method for the genetic analysis of the DNA-binding properties of Xenopus transcription factor IIIA (TFIIIA). In this approach, a transcriptional activator with the DNA-binding specificity of Xenopus TFIIIA is expressed in yeast cells, where it specifically activates expression of a beta-galactosidase reporter gene containing one or more Xenopus 5 S rRNA genes that function as upstream activator sequences. This transcription-promoting activity was used as the basis for a genetic assay of Xenopus TFIIIA's DNA-binding function in yeast, an assay that we show can be calibrated quantitatively to allow the affinity of the Xenopus TFIIIA-5 S rRNA gene interaction to be deduced from measurements of beta-galactosidase activity. We have combined this genetic assay with a simple and efficient method of mutagenesis that makes use of error-prone PCR and homologous recombination to generate and screen large numbers of TFIIIA mutants for those with altered 5 S rRNA gene-binding affinity. Over 30 such mutants have been identified and partially characterized. The mutants we have obtained provide strong support for the application to intact TFIIIA of recent structural models of the N-terminal zinc fingers of the protein bound to fragments of the 5 S rRNA gene. Other mutants permit identification of important residues in more C-terminal zinc fingers of TFIIIA for which high-resolution structural information is not currently available. Finally, our results have interesting implications with respect to the mechanism of activation of transcription by RNA polymerase II in yeast.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Testes Genéticos , RNA Ribossômico 5S/genética , RNA Ribossômico 5S/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Dados de Sequência Molecular , Mutagênese , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIIA , Xenopus , Dedos de Zinco/genética , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...